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Abstract. In the perturbation theory of the general n-electron system, H(n)=
27 f(i)+AZ" g(i, j), the subsystem method provides a finite decomposition (termed ‘parti-
tion’) in each order of the perturbation eigenfunctions and energies. The present paper
shows that the third-order energy E‘¥(n) is a weighted sum of third-order energies E(n;)
belonging to electronic states (most of them highly excited) of the n; = four-, three- and
two-particle subsystems. The proof uses a parentage expansion of the second-order n-
electron eigenfunction. The energy partitions can be regarded as the rigorous derivation
of the important ‘atomic energy relations' intuitively derived by Bacher and Goudsmit.

1. Introduction

It is the goal of this paper to prove an additional part of the conjecture that the solution
to the n-electron eigenvalue problem, within each order of the perturbation expansion,
can be built up from the solutions of finitely many self-contained n,-electron eigenvalue
problems, where n,=1, 2, 3,.... The n,-electron problems belong to the subsystems
obtained from the full system by removing electrons. The maximal n, to enter at
perturbation order r=0, 1, 2, ..., is prescribed by the ‘non-separability’ condition for
the component eigenfunctions and energies, respectively. The order r =3 being con-
sidered here requires subsystems of size n; <4.

The idea of the subsystem analysis, and its connection to the perturbation expansion
in powers of the interelectronic interaction, have both been described by Bacher and
Goudsmit (1934). Their method has been broadened mathematically and extended to
also include the eigenfunctions up to first order (Racah 1943, Sinanoglu 1961, Chisholm
and Dalgarno 1966). The first-order eigenfunction is built up from ~(3) symmetry-
adapted first-order pair functions. This theorem, unlike Bacher and Goudsmit’s method
which focuses on the valence electrons, has found frequent application to the ab initio
calculation of second-order (Knight 1982) and third-order energies of ten-electron and
larger atoms (Jankowski et al 1982, Jankowski and Rutkowski 1988).

Two earlier papers (Schmidt 1983, Schmidt et al 1986, hereafter referred to as I
and II, respectively) were intended to give a thorough mathematical framework to the
subsystem method, covering energies as well as eigenfunctions. We have used the term
‘partitions’ for the finite decompositions that are typical for the method. The present
paper treats the third-order energy E’(n). In §§ 2 and 3 the given n-electron state
will be assumed ‘strictly non-degenerate’. Section 4 also treats the more general case
of a closed-shell atomic state.
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The structure of E*’(n) can be regarded as a consequence of either the pair structure
of the first-order eigenfunction (compare (3b)) or, equivalently, of the pair and
three-electron structure of the second-order eigenfunction (compare (3a)). The mutual
coupling of the coordinates of the pairs (or three-electron functions) and the 1/r;
interaction generates various types of integrals. It is easy to separate E®(n) into a
sum of pair energies E®’(2), and a complicated remainder consisting of non-separable
three- and four-electron integrals and of factorising integrals. On the other hand, if
the partition exists, the totality of all contributions can be ordered (in principle by
addition and subtraction) to form entire perturbation energies E‘®(4), E®(3), E®(2)
without any terms remaining that do not have this quality. As a matter of fact, one
knows the probable final result to which the process should lead: this equation occurs
(rather as an ansatz than as a rigorous statement) in Bacher and Goudsmit’s (1934)
method and in Trees’ (1954) extension thereof. The form of the partition sought can
also be guessed from analogy with the available partitions of E” and E® (I). The
proof of the E®® partition turns out to be far more complicated than that for the
second-order energy.

2. The partition of E®

As in I and II, consider an n-electron system with Hamiltonian

H(f,g;n)= Z fx)+A Z g(xiaxj)~ (1)
I=sisn 1=<i<j<n
The one-particle operator f contains the kinetic energy and the potential of the external
forces.. The ‘subsystems’ of (1) are defined as H(f, g; m) for particle numbers m =
1,2,..., n. Itis important that the f and g operators be the same for the whole family
of systems. This is naturally fulfilled if g is the full interelectronic interaction:

glxi, x)=1/ry. (2a)

The present theory first addresses this case, i.e. for atoms the 1/ Z expansion (Hirschfel-
der et al 1964). The Hartree-Fock-based perturbation expansion (McWeeny and
Steiner 1965) where the interaction is screened:

805 %) = 1/, = [(x) + v(x)] (26)

1
is, in principle, contained in the results of this paper since the occurrence of the
one-particle potentials v in (2b) does not alter the ‘non-separability’ (compare I (2.14))
of 1/r;. However, since f and g become dependent on the particular n-electron state
being considered, the subsystems H(f, g; m) will be of a much more formal character
than in the case of (2a).

An eigenstate of H(f, g; m) (any m<n) will be written as ¢(f, g; m) or y(m),
and its energy as E(f, g; m) or E(m). The configuration labelling the state is added
as a subscript: 7, p, o, K denote two-, three-, four- and n-electron configurations,
respectively. Foreach ¢(m) and E(m) the (formal) Rayleigh-Schrédinger perturbation
expansion in powers of A is assumed. The full (not intermediate) normalisation
(Hirschfelder et al 1964) for the perturbation wavefunctions ¢ (r=0, 1, 2,...) is
used. The third-order perturbation energy can be expressed in terms of the ¢ in
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different ways:
E(S)___Re (dl(O)’G_E(l)|w(2)> (3a)
E(3)=<¢(1)1G—E(I)WJ“)> (3b)

where G is the sum of the g(x;, x;) in (1). Since the partition of ¢‘? is available (II),
the expression (3a) is the more convenient point of departure for deriving the E®
partition: E requires setting up parent wavefunctions of four, three and two electrons.
In ‘¥, part of the necessary coupling is already realised.

The E‘® partition is treated here for the technically simple case of the zero-order
energy E¥)(n) being strictly non-degenerate (as defined in I, appendix B). This means
that the ¢ functions for both the full n-electron state, and for each relevant parent
state of four, three, and two electrons, have the form of a single Slater determinant
and that no further symmetry adaptation is required.

Theorem. Consider the eigenstate of configuration K of the n-electron Hamiltonian
H(f, g; n). Under the above assumptions, the third-order perturbation energy has the
partition:

ER(f,g;n)= ZK ES(f,g,4)—(n-4) ZK EQ(f, g;3)+<";3) ‘CLK EY(f, g, 2).
(4)

Each third-order energy on the right-hand side belongs to the appropriate subsystem
and state as indicated. The number of terms in the o, p and 7 sums is (3), (3), (3),
respectively.

Remark. Equation (4) holds for n=2. For n=2, 3 and 4 it expresses the non-
separability of E®(f, g; n). For n=3, for example, the o sum is empty and the =
sum is cancelled by the prefactor (n~3) (n—4)/2.

The smallest particle number so that E*'(n) has a genuine decomposition is n=35.
As an illustration of the partition, consider the ground state of the five-electron system.
Its configuration X = (1, 2, 3, 4, 5) consists of the five lowest one-particle levels (eigen-
values of f in (1)). Equation (4) expresses E¥ in terms of the E'® energies for the
substates or ‘parent states’ belonging to the subconfigurations of K. These are (3) =5
four-electron states, (3) = 10 three-electron and (3) = 10 two-electron states. The prefac-
tors in (4) are 1, —1, 1, respectively. Some of the parent states are ground or low-lying
states, but most of them are doubly or multiply excited. For example, o =(2, 3, 4, 5)
is similar to a core-ionised state.

3. Proof

The derivation of (4) to be given here departs from the expression (3a) for each of
the third-order energies. The n-electron second-order function ¢® (f, g; n) is used
in the form of its partition (II, (8)).

First an elementary procedure for deriving (4) will be described since it shows
clearly the process of grouping of primitive parts into entire perturbation energies
E®(m) (m=4,3,2) and entire ‘' V expressions’ (see appendix 1). The same grouping
is made in the construction of the parentage expansion of ¢‘®(n) which forms the
main step of the systematic proof. This proof can afterwards be given very compactly.
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The eigenfunction ®(n) contains, apart from orbitals, wavefunctions ¢¥(2),
¢'?(3) and products ¢V(2) ¢'"(2). By inserting ¢'*'(n) into (3a), ten types of primitive
integrals A,, A,,..., C, arise. They are listed on the left-hand side of table 1. For
example, a particular integral of B, type is

(BZ)pk = (d’ﬂk(ﬁ RN x4)|g(x3, x4)|¢/§,2)(x1 s X2, x3)¢§<0)(x4)> ()

where k and p are configurations of one and three electrons, respectively. The integral
(5) is a fragment of the perturbation energy E>(4) with o = p+ k (notation as in I,
(B6)). The total E>(4) contains further B, integrals as well as the A,, A,, A;, B,
C, types and also integrals of the factorising type C;. Table 1 shows which integral
types enter a given E®(m) or a given V expression. In the construction of the partition
(4), it is the first step to form the four-electron energies E‘*(4). Each of them must
appear with weight 1. It is interesting that factorising integrals (A, and C;) also occur
in E® (4). The next steps provide the E® (3) and E® (2). The factorising integrals
which remain at the end are absorbed by V expressions.

The more systematic way of obtaining the partition (4) begins with the parentage
expansion of ¢ (see appendix 2). In this expansion the structure of E® is being
prepared on the level of the wavefunctions. Rewrite E(n) thus:

ER(n)=(3) Re(g(x,, x,)¢0 - 6%y (6)
where

e(lé) = z aﬂEg)w(ﬂ?)(xl [ xz)‘//i'?)(xs, srey xn)-
< K

Inserted into (6), the parentage expansion (A2.1) produces six terms corresponding
to each of (A2.2)-(A2.7), namely the four-, three- and two-electron parts of (4) and
vanishing V expressions of the types V(3, 2), V(2, 2) and V(2, 2, 2), respectively.
This completes the proof of (4).

Table 1. The types of primitive integrals occurring in the third-order energy E®(n) fort
n = 6. The crosses indicate how the individual types contribute to the non-separable energies
E®(m) (m=4, 3, 2) and to the vanishing V expressions defined in appendix 1.

Primitive integral Is a fragment of

Integrandi (i, j) Type E®(4) E®@3) E®Q) V(3,2) V(,2) V(2,2,2)
glx;, x)u' P (x,, x,) (1,2) A, X X

(2,3) A, x

(3,4) A, X X
g(xnx;)'//(z)(xl’XZ!xS) (1,2) B, X X

(3,4) B, X

(8,5) B, X
g(x;, XJN/(I)(XU %) (1,2) C, X X X

X (x5, x4) (2,3) G X
(4,5) C, x
(5,6) C, X

+ For particle number n=35, C, and V(2,2,2) do not occur. The remainder of the table is the same.
1 The one-electron functions in the integrand do not affect the integral type and have been omitted. For a
complete integral see (5).
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4. Discussion

In this paper, it has been shown that the third-order energy of an n-electron state can
be expressed solely in terms of third-order energies belonging to the parent states
(Racah 1943) of four, three and two electrons. The parent states, most of which are
highly excited, arise by removing all but four, three or two electrons from the original
system.

There is a particular interest in the subsystem method: the partitions of E‘”, E*¥
(compare I), and of E*’, exhibit a physical aspect as each of them represents a relation
between the energies of the isoelectronic series (i) of a stable many-electron state, and
(ii) of a set of high-lying, usually autoionising, few-electron states (compare Komninos
et al 1986). Following Bacher and Goudsmit (1934), the energy partitions can, in
principle, be empirically examined using the measured spectra of an atom and its ions.
The partition (4) can also be used as a computational tool in the ab initio calculation
of E®(n) (if, as usual, n is not very large). Adopting the variation-perturbation
procedure of Knight (1982) or Jankowski and Rutkowski (1988), one would evaluate
each component energy in terms of first-order pair functions. Some of the physical
and computational aspects of the energy partitions will be examined in more detail in
a later paper.

The proof of the partition has employed a parentage expansion of the second-order
eigenfunction and the device of the vanishing V expressions. The latter make trans-
parent the mutual cancellation of the factorising integrals in E®(n). The V expressions
are a counterpart of the disconnected graphs of the diagrammatic perturbation theory
(Paldus and Cizek 1975). A thorough comparison might shed some light on new
aspects of the connected-graph theorem (Hurley 1976, Huba¢ 1980, Kutzelnigg 1984).

The E® partition has the form of (4) for a strictly non-degenerate n-electron state.
The derivation is, however, transferable to the case of an atom with completely closed
shells. For the 1/Z expansion of atoms, the f and g operators in (1) are (Hirschfelder
et al 1964):

f(xi)=_%V%—1/ri (7N

and g=1/r;. For the ground state K =1s"2s’2p°('S) of the ten-electron atom, the
partition is

EQ(Ne)=) p,E$(Be)-6Y p,ES(Li)+21Y p,EY(He). (8)
o I} ™

In (8) the subscripts K, o, p, = are to specify atomic states (terms) rather than the
mere configurations of (4). The o sum contains the E‘® energies for those states
(terms) of the beryllium isoelectronic series which are parents to K. Each E appears
with a weight p, equal to the multiplicity of the term. The total sum of the p, is
(3)=210. Similarly, the p and = sums refer to terms of the lithium and helium
isoelectronic series. Table 2 summarises a few of the terms and their multiplicities.

The concept of the energy partitions is related, apart from the method of Bacher
and Goudsmit (1934), to the decomposition given by Knight (1969, 1982) for the 1/Z
second-order energy of atoms. Knight employs three-electron contributions which are
not whole three-electron perturbation energies; his decomposition appears therefore
to be less systematic than the ‘partition’ of E®(n). Knight’s (1982) fractional-paren-
tage-like weight factors have significance for the generalisation of (8) to open-shell
states.
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Table 2. E** partition for the 1/ Z expansion of the ten-electron atom ground state (closed
shells). The table gives a few of the parent states entering (8). The weights p,, p, and p.,
are equal to the multiplicity of the respective term.

Four electrons Three electrons Two electrons
o Pa 4 P, T Pn
1522s% ('S) 1 15%2s (°S) 2 152 ('S) 1
1s22s2p ('P) 3 1s22p (*P) 6 152s ('S) 1
1s22s2p (°P) 9 1s2s2p (°P) 6 1s2s (°S) 3
2p* ('D} 5 2p*® (°D) 10 2p? (‘D) 5

Finally, it should be noted that in recent years a different subsystem method has
been developed by Valdemoro and coworkers (Lain et al 1988). The method approxi-
mates the two-particle density matrix of an n-electron state by a sum of density matrices
describing groups of p electrons at a time, where p=2, 3, 4, ..., are the stages of the
approximation. Although the formulation differs from that of the present paper, it is
evident that a common foundation exists for both methods.
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Appendix 1. The vanishing V expressions

The existence of the E* partition stems partly from the vanishing of certain symmetrical
combinations of scalar products which will be referred to as ‘V expressions’. An
individual V-expression summarises a few of the factorising integrals which occur in
EQ(n), n=4, and it forms the smallest vanishing unit of its kind.

Consider the scalar products

P =Wl (AL1)
Qi =W |G(m)~ EQlY) (A1.2)
for the order r=1 or r=2 and for perturbation wavefunctions of m electrons where
m=2or m=3. u,u, are any two m-electron configurations contained in the overall
configuration K. G(m) is the sum of the g(x, x;) for the m particles similar to (1).
For example G(2) = g(x,, x,). Let o, v, A, as well as 7, v,, A,, denote two-electron

configurations in K and p, p, three-electron configurations in K.
A V expression of the first type is

V(3,2) = Q PLr + P QY (A1.3)

ppy PO

and V(3,2)=0 holds if p+ 7 =p,+m, and p #p,. ‘+’ denotes the union of disjoint
configurations as in I, (B6). Another V expression, to be called V(2, 2), is obtained
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from (A1.3) by replacing p, p, by the pair », », of two-electron configurations.
V(2,2)=0if v+m=v,+m and v # v,. The last type of V expression occurring for
the third perturbation order is

V(2,2,2) = QW P PO + PSX, QU Pa + P P QG (A1.4)
One has V(2,2,2)=0if A+v+m=A,+v,+m (no further condition). For brevity,
the configuration subscripts, such as pp, 77, which specify a V expression, have not
been written on the left-hand side of (A1.3)-(A1.4). The fact that the V expressions
vanish follows immediately from the perturbation equations by suitable scalar multipli-
cation.

Appendix 2. Parentage expansion of y/”(n)

The proof of the E® partition employs the following parentage expansion of the
second-order eigenfunction. This expansion is more general than in the case of the
first-order eigenfunction (I, § 4) since it uses wavefunction products with two, three
and four factors:

l/’(lg)(xl s X2y 0 ey Xp) = 54’[044‘93+Qz+03,2+92,2+02,2,2] (A2.1)
where &' is the antisymmetriser for the variables x;, x4, ... x,, and
-2
Q.= (" ) ) Y a? - g (A22)
Q=—(n-2)(n-4) Y ayp? - ¢y (A2.3)
P
Q,= (" ;3) Yayd uy (A2.4)
n-2 W, (0 0, (2 ()
Q3,2= 3 z brrp[3wp ' '«/"rr +'¢I/1r * d/p ] ' d/—-”-f-—p (A2.5)
0
-2
92_2=—3(" 3 ) Y byl gD ) g (A2.6)
n-2 © . (1), (1), ,(0)
92,2,2 =3 4 ZA cﬂuA wrr ' wv ) Al l/’ THU+A (A2.7)

The same shorthand notation has been used as in II, § 3. The subscripts =, v, A
denote two-electron configurations, p and o denote three- and four-electron configur-
ations, respectively. The configurations appearing in a given product are mutually
disjoint and their union is K. All parentage coefficients result from the definition I,
(C6) or from successive application of it:

a,=a(m, #, K) (A2.8)
br=a, a(y, 7+v, 7) (A2.9)
Con =b, - a(A, 7+ v+ A, m+v). (A2.10)

a,, a, and b,, follow from (A2.8) and (A2.9) by replacing the appropriate subscripts.

The phases of the wavefunctions in (A2.1)-(A2.7) derive uniquely from the once
chosen phases of the non-separable components ¢ % (n=1), yP(n=2), yP(n=2)
and y@(n=3); see 1, §3. In terms of these phases the parentage expansion (A2.1)
and the partition II, (8) represent identical functions.
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